[FH [t
TECHNIKUM
WIEN

TW-Mailer - Basic Version

Work in groups of 2 and write a socket-based client-server application in C/C++ to send and receive
messages like an internal mail-server.

The client connects to the server and communicates through a stream socket connection in a
proprietary plain-text format delimited by new-line or “dot + new-line” (see detail-description).

Usage Client:
Jtwmailer-client <ip> <port>

IP and port define the address of the server application.

Usage Server:
Jtwmailer-server <port> <mail-spool-directoryname>

The port describes the listening port of the server; the mail-spool-directory the folder to persist the
incoming and outgoing messages and meta-data. The server is here designed as iterative server (no
simultaneous request handling). Hereby the server responds to the following commands:

SEND: client sends a message to the server.

LIST: lists all received messages of a specific user from his inbox.
READ: display a specific message of a specific user.

DEL: removes a specific message.

QUIT: logout the client.

www.technikum-wien.at 1

y University of
"’,_ Applied Sciences

” TéCHNIKUM
WIEN

Hints

¢ Received messages for each user should be persisted in the mail-spool-directory in an inbox for
each user, a sent mail folder is not necessary

e There are no restrictions about the design / structure of the message store.
o e.g.: 1 user with 1 file storing all related received messages.
o e.g.: 1 user with 1 inbox subfolder storing each received message in 1 file inside the folder.
©)

e Consider to use “readline()’-function (see: tcpip_linux-prog-details.pdf)

e We define a username for the sender and receiver as a max. 8 chars (a-z, 0-9)
o e.g.: nimm, bergerw, if12b345, if98a765

e Code quality and compliance to the principles of C-programming is part of the grading.
e Keep an eye on

o memory management (memory leaks, buffer overflows),

o child-process management (zombie-process),

o input validation and

o error handling (with meaningful error messages)

e Comment, structure and indent your code properly.

www.technikum-wien.at 2

[FH i
TECHNIKUM
WIEN

Protocol specification

SEND

SEND\n

<Sender>\n

<Receiver>\n

<Subject (max. 80 chars)>\n

<message (multi-line; no length restrictions)\n>
An

e The final dot ends the command.
e The server always responds with either “OK\n” or “ERR\n”.

LIST

LIST\n
<Username>\n

e The server responds with

<count of messages of the user (0 if no message or user unknown)>\n
<subject 1>\n
<subject 2>\n

<subject N>\n

www.technikum-wien.at

[FH i
TECHNIKUM
WIEN

READ

READ\n
<Username>\n
<Message-Number>\n

e The server responds with

OK\n
<complete message content (as defined in SEND)>\n

ERR\n

DEL

DEL\n
<Username>\n
<Message-Number>\n

e The server responds with

OK\n

ERR\n

www.technikum-wien.at

[FH [t
TECHNIKUM
WIEN

QUIT

QUIT\n

e The server does not respond.

Deliverables
e Hand-in
o The commented code for the client and the server code
o Makefile for the targets “all” and “clean”
o Executables
o Description of (1 page; pdf)

= the client and server architecture,
= used technologies
= development strategy and needed adaptions

The first part of the project will be graded in a moodle workshop, where students feedback other
students in a peer-review format.

Consider:
e everyone in the group hands in (including an unfinished state)
e everyone is assigned 3 submissions for a review
e give sufficient written feedback (spot checks by lecturers)
e don't be too strict and try to help

Markmg System (5 Points)

Your grading consists of your submission (received feedback) and your feedback given

e You give between 0 and 4 points for each review, detailed instructions are available in the
Moodle workshop

e A weighted sum of all your reviews given and received will be calculated by Moodle after the
workshop finished and you will receive max 5 points for this activity.

www.technikum-wien.at 5

