Prasentation “Secure Password Management”

Draft: Struktur

Note: Die angefiihrte Struktur ist die Langfassung von Punkten, die ich in irgendeiner Form erwahnen
wollen wiirde - die Prasentation selbst hat aber natiirlich weit weniger Flief3text auf den Folien

Intro

+ Ziel: Ein User soll glaubhaft machen kénnen, dass er der Besitzer eines Accounts ist

- “Proof-by-ownership”: OTP/TOTP (Prds B5 erwdhnen), Hardware-Keys (U2F Standard), Bio-
metrics (bissl hergeholt)
- “Proof-by-knowledge”: Security Questions, Passworter

+ Problematik: Ich muss das Passwort speichern, um es abgleichen zu kdnnen - und wenn meine
Application darauf zugreifen kann, kann es auch ein Angreifer!

- “Warum so schlimm? Eine komprimierte Datenbank ist doch eh schon ein worst-case
Szenario ...” Weil Menschen dumm sind und ihre Passworter wiederverwenden > ein
Angreifer kann sich plétzlich in alle? Accounts aller User zugreifen, sofern die Passworter
wiederverwendet wurden. (Folie: Link zu https://haveibeenpwned.com/).

- Paar Punkte zu

- Ansatz 1: Passwort DB verschliisseln » Problem: Schliissel muss auch gespeichert sein >
Loop zu Problem

- Ansatz 2: Wenn es doch nur eine Einbahnfunktion gebe ...

Hashing

+ Eine Hashfunktion gibt bei selben Input auch wieder einen identen Output > anstelle von pw
mit pw zu vergleichen, kann hash mit hash verglichen werden, aber aus hash kann nicht das
passwort geschlossen werden (Hier die Hashfunktion mit einem hiibschen Pfeil auf der Tafel
verdeutlichen)

+ Algorithmen Beispiele aufzahlen

« Wenn ein inputimmer zum selben output fiihrt, kann fiir jedes passwort der hash precomputed
werden -> Rainbow Tables Demo

1Some effort required
2...nicht durch MFA geschiitzten...

https://haveibeenpwned.com/

Entropy

« Rainbow tables konnen praktisch nur beschrankt Daten speichern -> kein standard passwort

verwenden
~28 BITS OF ENTROPY | | \JAS IT TROMBONE? NG,
@Eﬁﬁggg§§L9 ORDER TROVBADOR. AND ONE OF
) UNKNOWN THE Os WRS A ZERO?
BASE WORD \ W
e e AND THERE WAS
(= 3 DAYS AT SOME SYMBOL...
Tr@U b4d0r“ &3 000 GUESSES /sec
e Chncae A s
CAPS? COMMON NUMERAL HEwH 14 FASTER, BUT T bt 7 oha T
DIFFICOLTY T0 GUESS: DIFFICULTY TO REMEMBER:
(Yo CAN ADD A FEW MORE Bris To PUNCTUATION w H D
JoATRRNE DT AR

correct horse battery staple

FOUR RANDOM
COMMON WORDS

~ Y4 BITS OF ENTROPY

2™= 550 YEARS AT
1000 GUESSES/SEC

DIFFcOLTY T0 GUESS:
HARD

DIFFICULTY TO REMEMBER:
YOUVE ALREADY
MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED

EVERYONE TO USE PassWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS Th GUESS,

Figure 1: XKCD 936

+ nis2 empfehlungen

+ Entropy = Mogliche Passworter aufgrund von Kriterien:

- Lange

- Character-Set (Buchstaben (klein/grof3), Zahlen, (welche) Sonderzeichen?)
- Worter & Namen? > Wenn ja, Tauschregeln von Buchstaben (0 0, leolel o)

Salt & Pepper

« “Gratis” Entropy, am Server angehangt
« Salt: Unique pro Nutzer
« Pepper: Global fiir Application

Demo

https://gitea.nanopenguin.at/nanopenguin/itse-presentation (WIP)

TODOs:

+ Mehr Password-Encoders, ggf. eigens geschrieben
« DB Anbindung (zur besseren Veranschaulichung)

Bonus 1: Encoding Migration

Falls die Zeit es zuldisst

« Anhand der Code Demo, {enc}-Prefix
+ Challenges: Da das Passwort nicht bekannt ist, muss sich der Nutzer erneut einloggen um das
Passwort recodieren zu kdnnen

Bonus 2: Password Managers

Falls die Zeit es zuldisst

+ Mittels PBKDF2 (oder ahnlich): Master-Passwort wird zu einem Schliissel um die restlichen Pass-
worter verschliisseln zu kénnen

+ Beispiel Bitwarden (weil doku gut erklart & eigeninteresse): https://bitwarden.com/help/bitwarden-
security-white-paper/#authentication-and-decryption

-

| Bitwarden Client

. Key Derivation Function (KDF)
Salt: emnail address
Payload: master password

O bitwarden

y

User Login

Master Password

e o [—] | Stretched | . 6
Master Key HKDF | Master Key }—‘ .

Stretched The Symmetric Keylis used
Master Key to Decrypt Vault items
i
ACe AER e o
@ AES-256 bit Decryption
Key: Stretched Master Key
Key Derivation Function (KDF)

Cipher String: Protected
Master Key —= Payload: master key \Symmetric Key y,
| Salt master password T
1 6 “Cipher String”

[Master Password Hash |

| Protected Symmetric Key |
../.I
B rden KMS - Data Pl K AES-256 bit E N
{ . itwarden - Data Protection Key - - it Encryption A
Bitwarden Cloud ; ;
[[Master Password Hash] [Protected Symmetric Key]]
I I

FurFolien

Database w/ Transparent Data Encryption (TDE)
L]
[[Master Password Hash]

¥
[Protected Symmetric Key]]

	Präsentation “Secure Password Management”
	Draft: Struktur
	Intro
	Hashing
	Entropy
	Salt & Pepper
	Demo
	Bonus 1: Encoding Migration
	Bonus 2: Password Managers

