
Präsentation “Secure Password Management”

Draft: Struktur

Note: Die angeführte Struktur ist die Langfassung von Punkten, die ich in irgendeiner Form erwähnen
wollen würde ‑ die Präsentation selbst hat aber natürlich weit weniger Fließtext auf den Folien

Intro

• Ziel: Ein User soll glaubhaftmachen können, dass er der Besitzer eines Accounts ist

– “Proof‑by‑ownership”: OTP/TOTP (PräsB5erwähnen), Hardware‑Keys (U2FStandard), Bio‑
metrics (bissl hergeholt)

– “Proof‑by‑knowledge”: Security Questions, Passwörter

• Problematik: Ichmuss das Passwort speichern, um es abgleichen zu können ‑ undwennmeine
Application darauf zugreifen kann, kann es auch ein Angreifer1

– “Warum so schlimm? Eine komprimierte Datenbank ist doch eh schon ein worst‑case
Szenario …” Weil Menschen dumm sind und ihre Passwörter wiederverwenden → ein
Angreifer kann sich plötzlich in alle2 Accounts aller User zugreifen, sofern die Passwörter
wiederverwendet wurden. (Folie: Link zu https://haveibeenpwned.com/).

– Paar Punkte zu
– Ansatz 1: Passwort DB verschlüsseln → Problem: Schlüssel muss auch gespeichert sein →
Loop zu Problem

– Ansatz 2: Wenn es doch nur eine Einbahnfunktion gebe…

Hashing

• Eine Hashfunktion gibt bei selben Input auch wieder einen identen Output → anstelle von pw
mit pw zu vergleichen, kann hash mit hash verglichen werden, aber aus hash kann nicht das
passwort geschlossen werden (Hier die Hashfunktion mit einem hübschen Pfeil auf der Tafel
verdeutlichen)

• Algorithmen Beispiele aufzählen
• Wenn ein input immer zum selben output führt, kann für jedes passwort der hash precomputed
werden ‑> Rainbow Tables Demo

1Some effort required
2…nicht durch MFA geschützten…

1

https://haveibeenpwned.com/


Entropy

• Rainbow tables können praktisch nur beschränkt Daten speichern ‑> kein standard passwort
verwenden

Figure 1: XKCD 936

• nis2 empfehlungen
• Entropy = Mögliche Passwörter aufgrund von Kriterien:

– Länge
– Character‑Set (Buchstaben (klein/groß), Zahlen, (welche) Sonderzeichen?)
– Wörter & Namen? →Wenn ja, Tauschregeln von Buchstaben (0 ↔ O, 1 ↔ l ↔ I ↔ !)

2



Salt & Pepper

• “Gratis” Entropy, am Server angehängt
• Salt: Unique pro Nutzer
• Pepper: Global für Application

Demo

https://gitea.nanopenguin.at/nanopenguin/itse‑presentation (WIP)

TODOs:

• Mehr Password‑Encoders, ggf. eigens geschrieben
• DB Anbindung (zur besseren Veranschaulichung)

Bonus 1: Encoding Migration

Falls die Zeit es zulässt

• Anhand der Code Demo, {enc}‑Prefix
• Challenges: Da das Passwort nicht bekannt ist, muss sich der Nutzer erneut einloggen um das
Passwort recodieren zu können

Bonus 2: Password Managers

Falls die Zeit es zulässt

• Mittels PBKDF2 (oder ähnlich): Master‑Passwortwird zu einemSchlüssel umdie restlichenPass‑
wörter verschlüsseln zu können

• BeispielBitwarden (weil dokuguterklärt&eigeninteresse): https://bitwarden.com/help/bitwarden‑
security‑white‑paper/#authentication‑and‑decryption

3



FürFolien

4


	Präsentation “Secure Password Management”
	Draft: Struktur
	Intro
	Hashing
	Entropy
	Salt & Pepper
	Demo
	Bonus 1: Encoding Migration
	Bonus 2: Password Managers



