Prasentation “Secure Password Management”

Draft: Struktur

Note: Die angefiihrte Struktur ist die Langfassung von Punkten, die ich in irgendeiner Form erwahnen
wollen wiirde - die Prasentation selbst hat aber natiirlich weit weniger Flief3text auf den Folien

Intro

+ Ziel: Ein User soll glaubhaft machen kénnen, dass er der Besitzer eines Accounts ist

- “Proof-by-ownership”: OTP/TOTP (Prds B5 erwdhnen), Hardware-Keys (U2F Standard), Bio-
metrics (bissl hergeholt)
- “Proof-by-knowledge”: Security Questions, Passworter

+ Problematik: Ich muss das Passwort speichern, um es abgleichen zu kdnnen - und wenn meine
Application darauf zugreifen kann, kann es auch ein Angreifer!

- “Warum so schlimm? Eine komprimierte Datenbank ist doch eh schon ein worst-case
Szenario ...” Weil Menschen dumm sind und ihre Passworter wiederverwenden > ein
Angreifer kann sich plétzlich in alle? Accounts aller User zugreifen, sofern die Passworter
wiederverwendet wurden. (Folie: Link zu https://haveibeenpwned.com/).

- Paar Punkte zu

- Ansatz 1: Passwort DB verschliisseln » Problem: Schliissel muss auch gespeichert sein >
Loop zu Problem

- Ansatz 2: Wenn es doch nur eine Einbahnfunktion gebe ...

Hashing

+ Eine Hashfunktion gibt bei selben Input auch wieder einen identen Output > anstelle von pw
mit pw zu vergleichen, kann hash mit hash verglichen werden, aber aus hash kann nicht das
passwort geschlossen werden (Hier die Hashfunktion mit einem hiibschen Pfeil auf der Tafel
verdeutlichen)

+ Algorithmen Beispiele aufzahlen

« Wenn ein inputimmer zum selben output fiihrt, kann fiir jedes passwort der hash precomputed
werden -> Rainbow Tables Demo

1Some effort required
2...nicht durch MFA geschiitzten...



https://haveibeenpwned.com/

Entropy

« Rainbow tables konnen praktisch nur beschrankt Daten speichern -> kein standard passwort
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Figure 1: XKCD 936

+ nis2 empfehlungen

+ Entropy = Mogliche Passworter aufgrund von Kriterien:

- Lange

- Character-Set (Buchstaben (klein/grof3), Zahlen, (welche) Sonderzeichen?)
- Worter & Namen? > Wenn ja, Tauschregeln von Buchstaben (0 0, leolel o)




Salt & Pepper

« “Gratis” Entropy, am Server angehangt
« Salt: Unique pro Nutzer
« Pepper: Global fiir Application

Demo

https://gitea.nanopenguin.at/nanopenguin/itse-presentation (WIP)

TODOs:

+ Mehr Password-Encoders, ggf. eigens geschrieben
« DB Anbindung (zur besseren Veranschaulichung)

Bonus 1: Encoding Migration

Falls die Zeit es zuldisst

« Anhand der Code Demo, {enc}-Prefix
+ Challenges: Da das Passwort nicht bekannt ist, muss sich der Nutzer erneut einloggen um das
Passwort recodieren zu kdnnen

Bonus 2: Password Managers

Falls die Zeit es zuldisst

+ Mittels PBKDF2 (oder ahnlich): Master-Passwort wird zu einem Schliissel um die restlichen Pass-
worter verschliisseln zu kénnen

+ Beispiel Bitwarden (weil doku gut erklart & eigeninteresse): https://bitwarden.com/help/bitwarden-
security-white-paper/#authentication-and-decryption
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